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Abstract 

Air Force doctrine requires reliable and accurate information when striking 

targets.  Further, this doctrine states that fusion should be utilized whenever possible to 

ensure the best possible information is conveyed; there is no specific guidance as to how 

to fuse this information.  This thesis extends the research found in Leap, Bauer, and 

Oxley (2004) to include a non-declared class.  The Identification system operating 

characteristic (ISOC) was adapted to allow for non-declarations both at the individual 

sensor level as well as the fused output level.  A probabilistic neural network (PNN) was 

also used as a fusion technique.  A cost function was developed that incorporated 

misclassification error as well as non-declaration rules.  In addition, a heuristic was 

developed to find optimal rules through a likelihood ratio method. Finally, a sensitivity 

analysis was performed.     
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AN INVESTIGATION OF THE EFFECTS OF CORRELATION AND 

AUTOCORRELATION ON CLASSIFIER FUSION WITH NON-DECLARATIONS 

 

1. Introduction 

1.1 Background 

 Correct discrimination of hostile and friend forces is paramount to success in air 

operations.  The possibility of incorrectly classifying hostiles as friends and vice versa 

can cost the lives of U.S. servicemen.  Automatic target recognition (ATR) is one method 

of discriminating targets.  ATR consists of the following six steps: detection, location, 

combat identification (CID), decision, execution, and assessment (AFPAM 14-210, 

1998).  Of the six steps necessary for ATR, CID is considered one of the most critical and 

challenging problems facing the defense community today (Robinson and Aboutalib, 

1989).  Combat identification accounts for a major point of emphasis in the military’s kill 

chain consisting of search, detect, track, classify, etc. (Haspert, 2000).  The use of multi-

sensor fusion offers an avenue for improvements in classification accuracy.  Multi-sensor 

fusion combines information from multiple sources to create inferences that cannot be 

achieved through single source intelligence or information (Hall and Steinberg, 2001).  

This improvement is supported by Air Force guidance and other research efforts.  In 

particular, Air Force targeting guidance states that the use of fusion should be used 

whenever possible to enhance intelligence support while adding credibility and accuracy 

(AFPAM 14-210, 1998).  One common assumption in fusion models is independence 

both between classifiers and across features.  Although this occurs in some cases, there is 

a limited amount of research as to what happens when information collected from 
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classifiers fails this assumption (Willett, et al.,. 2000).  Past research and graduate theses 

investigated the effects of correlation on different fusion methods.  This research furthers 

the previous efforts of Storm et al.,. (2003) and Leap et al.,. (2004) to include an 

“indifference zone.”  The indifference region will consider removal of exemplars within a 

window corresponding to a high probability of misclassification.  Two fusion models will 

be utilized to test performance with the addition of the indifference region. These models 

are extensions to the Identification System Operating Characteristic (ISOC) fusion 

(Haspert, 2002) and Probabilistic Neural Network (PNN) fusion.  The ISOC assumes 

independence of the classifiers while the PNN does not operate on that assumption.       

1.2 Problem Statement 

  
In this research the effects of adding a third class, that is non-declared, are 

explored.  Data created in Matlab were used to structure a relatively easily separable 

problem for a pilot study.  Data created in Leap 2004 will be used to test the addition of 

non-declarations.  Several problems will be visited, each with increasing complexity.  

The desired output will be a useful rule applied to the specific problem geometries 

considered with the hopes of insight for use of non-declarations in the field.  Although 

training, test and validation data were generated for this research, the methodology 

should be applicable to real world scenarios.   

1.3 Outline of Thesis 

 This research consists of the following five chapters: Introduction, Literature 

Review, Methodology, Findings and Analysis, and Conclusions.  A succinct chapter by 

chapter explanation follows.  
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 Chapter 1: Introduction - Background for this research as well as the problem 

statement and research objectives are developed. 

 Chapter 2: Literature Review - Reasons to fuse data, methods for fusion of data 

and their assumptions, and pertinent literatures are reviewed as well as data generated in 

Leap (2004) used for testing and validation. 

 Chapter 3: Methodology - Fusion methods employed are addressed including two 

heuristics for adding non-declarations based on the cost of misclassification. 

 Chapter 4: Findings and Analysis - Bulk of research showing what happened 

when problems described in Chapter 3 were actually tested. 

 Chapter 5: Conclusion and Recommendations - A brief review of the research 

results as well as ideas for follow on research are presented. 
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2. Literature Review 

2.1 Introduction 

This chapter focuses on relevant literature applicable to this research.  This review 

initially discusses the need for classifier fusion as found in Air Force Doctrine.  Next, it 

explores the fusion methods utilized.  Then, it details the two types of multi-classifier 

fusion methods utilized in this study.  Finally, the data sets that were employed are 

described in detail.  

2.2 Air Force Direction 

“Since the Wright Brothers first flew at Kitty Hawk, the airplane has continually 

evolved as an instrument of military and national power. Today, the proper employment 

of aerospace power is essential for success on and over the modern battlefield” (AFDD 2-

1, 2000).   In order to achieve success, targets must be correctly identified leading to 

precision engagement of the enemy.  Intelligence for targets should be based upon 

multiple sources for improved accuracy and reliability (AFPAM 14-210).  Air force 

doctrine clearly states that great care should be taken to minimize civilian casualties 

while military objectives are correctly identified and attacked (AFPAM 14-210, 1998).  

Minimizing civilian casualties requires sound target intelligence which enhances military 

effectiveness by showing that the risks undertaken are militarily worthwhile (AFPAM 

14-210, 1998).  Intelligence, surveillance, and reconnaissance (ISR) are critical aerospace 

mission areas related to CID.  ISR relies on fused information for accurate intelligence 

suitable to deny adversary efforts at impeding information collection.  Fused information 

shows the big picture allowing commanders a more lucid depiction of the battlespace 
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(AFDD 2-5.2, 1999).  Combining multi-source data into necessary intelligence useful in 

decision making is called fusion (AFPAM 14-210, 1998).   

2.3 Fusion Methods 

Identification System Operating Characteristic ISOC fusion and Probabilistic 

Neural Networks PNN are the two techniques considered in this effort.  The main 

difference in the above methods can be viewed from a top level as the difference between 

feature level and decision level fusion.  Neural networks operate in a manner similar to 

feature level fusion (see Figure 2-1 below).  Features are extracted and fused in the chosen 

network before an exemplar is classified into a group based upon a probability of class 

membership.  Decision level fusion first labels exemplars at the individual classifier 

level.  These labels are then fused to create a single fused indication for a target.  The 

ISOC fusion method is one example of decision level fusion.  Once exemplars are 

classified into output labels (hostile, friend, etc.), they are compared using logical rules.  

One simple rule for combining these output labels, assuming only two classifiers, would 

be to declare a target as hostile only if both classifiers labeled the target as hostile 

(Robinson and Aboutalib, 1989).  Figure 2-1 addresses the difference between feature and 

decision level fusion in more detail.  
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Figure 2-1: Multi-Classifier Fusion Levels (Robinson and Aboutalib, 1989). 

 

 
 
2.4 Multi-Classifier Fusion Levels 

 One major assumption of decision level fusion is independence of classifiers, 

specifically independence of feature vectors classified by classifiers (Robinson and 

Aboutalib, 1989).  Little is known when the assumption of independence does not hold 

for a given feature set (Willett, 2000).  Robinson and Aboutalib considered the 

mathematical implications of dependence on decision level fusion techniques.  Assume a 

population set contains two distinct classes, C1 and C2.  Also assume the a priori 

probabilities of class membership are known, P(C1) and P(C2) (Robinson and Aboutalib, 
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1989).  The cost of decisions are as follows: F(C1,C1) = 11α  is the cost of a true positive, 

F(C2,C2) = 22α  is the cost of a true negative, F(C1,C2) = 12α  is the cost of a false positive, 

and F(C2,C1) = 21α  is considered the cost of a false negative.  Assume that F(Ci,Cj) > 

F(Ci,Ci) for i j and  (Robinson and Aboutalib, 1989).  With two features, a 

composite feature vector can be defined as 

≠ 2,1=i
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.  Through Baye’s rule and the 

expected value of the cost function, it can be shown that the likelihood of being in C1 is 

)(
)(

)(
)(

)|(
)|(

1

2

1121

2212

2

1

Cp
Cp

CXp
CXp

m

m ⋅
−
−

>
αα
αα  (Robinson and Aboutalib, 1989).  

 A decision rule from the above likelihood is thus, 

if
)(
)(

)()|(
)()|(

1121

2212

22

11

αα
αα

−
−

>⎥
⎦

⎤
⎢
⎣

⎡
⋅
⋅

CpCXp
CpCXp

m
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With regards to feature level fusion, if 2211 αα =  and 2112 αα = , the decision rule above 

yields the “minimum probability of error decision” (Robinson and Aboutalib, 1989).   

The right hand side of the inequality becomes a constant allowing a global minimum to 

be reached.   

 Continuing with consideration to decision level fusion, the cost function to be 

minimized now contains two decisions, D1 and D2 corresponding to the labels applied at 

each classifier.  The expected value function now carries added terms and grows more 

complex.  In fact, the likelihood decision function is now changed to the following.   
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(Robinson and Aboutalib, 1989).  

By inspection of the above inequality, to reach a global optimum one needs to know 

p(D2|X2) and p(X2|X1,C2) for all )|( 12 XX  (Robinson and Aboutalib, 1989).  Thus, in 

order to reach a global optimum using decision level fusion with two possible classes, 

one should not classify the classifiers independently, but should have prior knowledge of 

one classifier before using the other.  However, if the feature vectors are truly 

independent of one another, the right hand side of the inequality becomes a constant as in 

feature level fusion and classifying each classifier independently can return the fused 

global optimum (Robinson and Aboutalib, 1989).  The addition of a third unknown class 

was not addressed and the effects of correlation were uncertain.   

Further research by Willett, Swaszek, and Blum considered what level of 

classifier processing of a Gaussian shift in mean problem was required to reach optimum 

performance (Willett et al.,, 2000).  Feature vectors and correlation coefficients were the 

parameters considered between exemplars.  With this problem, difficulties arising from 

levels of statistical dependence resulted in several complicated rules.  After partitioning 

the space of Gaussian shift in mean problems into three regions named “the good,” “the 

bad,” and “the ugly,” research reflected optimal rules based upon the partitioned region 

of use (Willett et al.,, 2000).  In particular, any problem in “the good” region required 

statistical independence of feature vectors in order to reach optimality (Willet et al.,, 

2000).  Outside of “the good” region, complex rules and problem specifics define the rule 

needed which might be able to operate without the assumption of independence (Willett 
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et al.,, 2000).  Feature level fusion does not require independence of their features; there 

is not much new information received with high levels of correlation and feature 

selection might be useful.    

2.5 ISOC 

 The Identification System Operating Characteristic (ISOC) fusion method seeks 

the lowest operational cost for a given threshold (Ralston, 1999).  This particular rule is 

then applied to all future exemplars.  The ISOC differs from traditional classifier fusion 

methods which frequently utilize fixed rules in seeking a minimum cost (Haspert, 2000).  

While fixed rules remove difficulty in terms of implementation, they often do not reach a 

global optimum solution (Haspert, 2000).  Bayesian techniques have the ability to 

produce optimal ID classifier fusion rules (Haspert, 2000).  Two common target classes 

are hostile and friend.  This research extends to a third target class, unknown.   

2.5.1 Classifier Performance Matrices 

 Classifiers take an exemplar and output a classification label as shown in Table 2-1.  

Decision level fusion methods such as the ISOC take these matrices from all available 

classifiers and make a fused decision.        
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Table 2-1: Single Classifier Confusion Matrix. 

  Indication 
  “H” “F” “ND” 

H 
P(“H”|H) 

TP 
P(“F”|H) 

FN 
P(“ND”|H) 

 

T
ru

th
 

F 
P(“H”|F) 

FP 
P(“F”|F) 

TN 
P(“ND”|F) 

 
  

 
 
The above confusion matrix displays the possible outputs from a single sensor/classifier.  

The rows in the table correspond to the true states of nature for targets while the columns 

represent the declaration made by the classifier.  For instance, represents the 

probability of this classifier declaring the target as unknown when it was in fact hostile.  

This is the confusion matrix used throughout this research with H being hostile, F being 

friend, and ND being unknown.  This matrix can be expanded as needed to match 

classifier outputs and classes possible.  Accurate classifiers will carry large values in 

and and small probabilities elsewhere (Haspert, 2000).   

 H)|P(“ND”

 H)|P(“H”  F)|P(“F”

2.5.2 Combat Identification System States 

 Let Ns be the total number of classifiers in a system and i be the classifier in 

consideration within the system with sN i 1 ≤≤  (Ralston, 1998).  Further, let ni be the 

number of classifier states of the ith classifier accounting for the rows of the performance 

matrix shown in Table 2-2.  Finally, let ki be the classification state of the ith classifier 

with .  Assuming there is some level of independence across the classifiers, 

then  (Ralston, 1998).  The following classifier performance matrix in Table 2-2 

represents the probabilities found from data accumulated through exercises, tests or 

analyses (Ralston, 1998).  It can easily be adapted to handle more true classes as well as 

ii n k 1 ≤≤

∏
=

=
sN

i
inN

1
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output states.  Let Sj denote the jth configuration of the combat ID system (CID) where 

 represents all possible configurations of the CID withU
N

j
jSS

1=

= Nj ≤≤1  (Ralston, 

1998).       

Table 2-2: Classifier Performance Matrix. 

 
 

j 
 

Sj 

1 
 

),...,,,( 11
3

1
2

1
1 sNssss  

2 
 

),...,,,( 22
3

2
2

2
1 sNssss  

3 
 

),...,,,( 33
3

3
2

3
1 sNssss  

. 

. 
. 
. 

. 

. 
. 
. 

N ),...,,,( 321
N
N

NNN
s

ssss
 

  

 
The classifier performance matrix can be used to create the probability matrix from Table 

2-1.  If there is negligible correlation among classifiers, classifier probability matrices can 

be multiplied to create conditional probabilities of being in a state of the classifier 

performance matrix Sj given truth T ( },{ FHT ∈ ).  Thus, an equation for this probability 

is  where  denotes the state of the j∏
=

=
sN

i

j
ij TsPTSP

1

)|()|( i
js th classifier in the ith 

configuration (Leap, 2004; Ralston, 1998).  It is important to note that ∑ =
j

j TSP 1)|(  
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such that  (Ralston, 1998).  The classifier performance 

matrix for a two classifier, three output problem as used in parts of this research would 

look like the one in Table 2-3. 

∑∑ ==
j

j
j

j FSPHSP 1)|()|(

 

Table 2-3: Sample Classifier Output State Matrix. 

 
 

j ),( 21
jj ss  

1 (H,H) 
2 (H,U) 
3 (H,F) 
4 (U,H) 
5 (U,U) 
6 (U,F) 
7 (F,H) 
8 (F,U) 
9 (F,F) 

 
 
 
2.5.3 Identification Fusion Rules 

 A fusion rule consists of a vector relaying classifier output combinations to 

declare in a class.  This rule is made to resolve conflicting indications from independent 

classifiers (Ralston, 1998).  A complete identification (I.D.) fusion rule can be expressed 

as a vector R.  This N dimensional vector R = (r1, r2, r3, …,rN) corresponds to the 

different state outputs as shown in Table 2-3 above.  For N ,2, 1,  j …= , each rj ∈{0, 1} 

denotes a declaration for that rule (Leap, 2004).  For instance, in the case considered 

here, a hostile rule could be .  This rule would declare a target as hostile “H” 

any time both classifiers labeled the target as hostile or only the first classifier 

declares hostile  (Ralston, 1998).  The converse will be classified as friends, 

0) 0, 1, (1,

)H"",H"("

)F"",H"("
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)H"",F"(" or .  The probability of declaring a target as hostile given that it is 

hostile is  and the probability of misclassifying the target as 

a hostile is  (Ralston, 1998).  Figure 2-2 further depicts the 

ISOC fusion process.     

)F"",F"("

∑
=

⋅=
N

j
jj rHSPHHP

1
)|()|"("

j

N

j
j rFSPFHP ⋅=∑

=

)|()|"("
1
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Figure 2-2: ISOC Classifier Fusion Process (Forced Decision) 
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Complete enumeration of all possible rules can become daunting with the addition of 

classifiers and/or states.  For instance, a two classifier-three output system would contain 

512 possible rules (29), but a three classifier-three output system would contain 

134,217,728 possible rules or (227).  While 227 can require days of run time depending on 

machine speed, 29 rules are manageable and thus complete enumeration was employed 

for the ISOC fusion forced decision method described in chapter three to find the optimal 

rule set based on cost. 

2.5.4 Likelihood Ratio Approach to Rules Selection 

In order to achieve the best classification in the two classifier case, one must look 

to find the rule that maximizes while minimizing ; a solution where 

the greatest number of true targets are identified with the least number of false alarms 

possible for the two class problem would then be reached (Ralston, 1998).  The best 

possible classifier performance would be to correctly identify all hostiles and friends.  

This is usually not feasible, but the likelihood ratio described below allows a chance to 

see how close a set of classifiers are to that perfect classification.  The likelihood ratio 

method considers the optimal hostile and friend rules built in sequence element by 

element.  There are two rules that can easily be compared to the optimal classifier 

performance, never declare any targets hostile and always declare all targets hostile 

(Haspert, 1998).  The “always declare hostile” rule ensures that no targets are missed at 

the cost of friendly casualties; this rule is accomplished by declaring all exemplars hostile 

by setting all elements of the hostile rule 

H)|H"P(" F)|H"P("

1=jr  for all N,1,  j …=  (Ralston, 1998).  This 

ensures all hostile forces are engaged at the cost of the highest level of fratricide possible.  

The most conservative “never declare hostile” rule is found by setting all elements of the 
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hostile rule  for all .  The next most conservative rule will contain 1 

 and all other  thus only declaring one classifier output state as hostile.  This 

rule is the state with the largest likelihood ratio found by calculating 

0=jr N,1,  j …=

1=jr 0=jr

)|(
)|(

FSp
HSp

j

j  for all j 

and sorting these ratios from greatest to smallest.   States are added in order of their 

likelihood ratios to the hosile rule until the “always declare hostile” rule is reached.  This 

process of adding rules based on their likelihood of being hostile forms the optimal ISOC 

boundary.  The following algorithm further explains this ISOC boundary creation (Storm, 

Bauer and Oxley, 2003; Leap, 2004).   

1. Calculate  for all )|( TSP j 9,...,1=j  and },{ FHT ∈  from the classifier confusion 

matrices. 

2. Calculate  for all j where the likelihood ratio for state 

j of the classifier output matrix is. 

)|(/)|( FSPHSPLR jj
j = jLR

3. Rank from greatest to smallest such that  where  is 

the largest and  is the smallest ratio. 

jLR Nj
N

jj LRLRLR ][]2[]1[
21 ≥≥≥ K 1

]1[
jLR

Nj
NLR ][

4. Select corresponding to the largest  not yet included in the hostile fusion rule 

( 1  in R) 

jS Nj
NLR ][

=
Nj

r

5. Go to 3 unless  for all j 1=jr

This algorithm “turns on” elements of the hostile rule in decreasing order of their 

likelihood ratio (Ralston, 1998).  The two extreme rules described above generate the end 

points of the boundary and the above algorithm forms the rest of it in succession of 
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likelihoods.  Thus, there will be 1+N  distinct rules forming the ISOC boundary 

(Ralston, 1998).  The ISOC fusion process using likelihood ratios is depicted in Figure 2-3. 
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Figure 2-3: ISOC Classifier Fusion by Likelihood Ratios. 
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This forms the basis for using likelihood ratios to generate optimal rules. This section 

will be readdressed in chapter three with further implementation concerns. 

2.5.5 Total Cost of Misclassification 

In order to have a true comparison between rules, a metric must be defined.  The metric 

used herein calculates costs of misclassifications based on probabilities found in the 

classifier probability matrix in Table 2-1 (total cost function below does not include non-

declarations; “ND” in table will be addressed in this context in chapter three).  For the 

two classifier-two output case, a total cost function is   

)()()()( FPPFPCFNPHPCC FPFNT ××+××=            (2-1) 

 positive false a ofy Probabilit)|(            

friend a being target a ofy probabilit priori a               
positive false a ofCost                

R) rule oft (Complemen 1                 

2.5.6)in  (Defined R rule of jElement                   

negative false a ofy Probabilit)|(           

hostile being target a ofy probabilit priori a              
negative false a ofCost               

 testedbeing rule for thecost  Total                
        Where

1

1

 rFSPP(FP)

P(F)
 C

rr

r

 rHSPP(FN)

P(H)
 C
 C

N

j
jj

FP

jj

j

N

j
jj

FN

T

=×=

=
=

−=

=

=×=

=
=
=

∑

∑

=

=
 

In order to compare rules allowing non-declarations, terms need to be added and will be 

addressed in the methodology section.   

2.5.6 Notation  

Thus far, rules were limited to hostile or friend with the following hostile notation: 
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),,,( 21 NrrrR K= where  for }1,0{∈ir Ni ,,2,1 K=  with N representing the possible 

number of output combinations from classifiers as shown in Table 2-3.  It was implicitly 

assumed that the friend rule was simply the complement to the hostile rule or 

 ),,,( 21 NrrrR K= where ii rr −= 1  for Ni ,,2,1 K= .  In later sections, this will be 

extended to a non-declared rule requiring the notation from Ralston (1998) to be 

expanded as follows.  Let H represent the hostile rule where ),,,( 21 NhhhH K=  with 

; let F denote the friend rule with }1,0{∈ih ),,,( 21 NfffF K=  and }1,0{∈if ; further, let 

ND be the non-declared rule with ),,,( 21 NndndndND K=  and }1,0{∈ind .  These rules 

are mutually exclusive and collectively exhaustive such that 1=++ iii ndfh  for 

all .  This notation will be further addressed in 3.2.4.           Ni ,,2,1  K=

2.6 PNN Fusion Method 

 A Probabilistic Neural Network (PNN) is a useful tool proven to converge to the 

Bayesian optimal classifier if given enough data for training (Wasserman, 1993).  The 

PNN trains very quickly and is robust to noise (Wasserman, 1993).  The amount of 

computations required to make classifications with a PNN greatly depend on the size of 

the training set (Wasserman, 1993).  Figure 2-4 shows a probabilistic neural network. 
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Figure 2-4: Probabilistic Neural Network (Wasserman, 1993) 

 
Figure 2-4 shows a normalized input vector xn),x2,x1,(X …= fed to the distribution layer 

of a PNN.  The distribution layer is a connection point and does not perform any 

computations (Wasserman, 1993).  The weights applied to each distribution layer vector 

heading into any one pattern layer correspond to a specific training vector.  The pattern 

layer computes the sum of the weights contributed from every distribution layer neuron 

and applies to it a non-linear function yielding Zci; c corresponds to the particular training 

vector used and i indicates the pattern layer involved in the computation (Wasserman, 

1993).  Each Zci is formed by the equation ⎥
⎦

⎤
⎢
⎣

⎡ −
= 2

)1(
exp

σ
i

t
Ri

ci
XX

Z  where XRi denotes the 

particular training vector utilized for the pattern layer considered (Wasserman, 1993).  

The summation layer, related to a particular class, takes all Zci from its class and 

computes ∑
=

⎥
⎦

⎤
⎢
⎣

⎡ −
=

1
2

)1(
exp

i

Ri
t

c
XX

S
σ

 (Wasserman, 1993).  For the PNN displayed in 
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Figure 2-4, there are two possible classes corresponding to the two summation layer 

neurons.  The output from the summation layers are then compared at the decision layer 

yielding a one if SA > SB and a zero if the opposite is true.  Designating a target with a one 

labels it as class A.  The link to more classes is simply the addition of pattern layer 

neurons as well as more summation layers; the determination of class membership is then 

chosen by the largest summation layer value (Wasserman, 1993).  

2.7 Data Generation 

The data used for this research were created in Leap 2004.  Several different data sets 

were created to test a broad range of problems.  Two discriminant functions were utilized 

to serve as classifiers, linear and quadratic.  The linear classifier was created with 

assumed equal covariance and equal prior probabilities of class membership.  It generated 

the posterior probabilities of class membership for use in fusion.  The equation used for 

the posterior probabilities in the linear classifier was 

 

∑
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The quadratic classifier operated under the assumptions that the prior probabilities were 

equal, but the covariance matrices could not be assumed equal.  The posterior probability 

equation used for the quadratic classifier was  
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Two types of correlation were considered to match possible real world scenarios, inter-

correlation and intra-correlation.  Inter-correlation describes the correlation between the 

features of a data set (Leap, 2004).  For instance, the height and width of a particular 

target may have a strong correlation; the length of a T-72 tank is in proportion to its 

width.  Table 2-4 demonstrates inter-correlation. 

 

Table 2-4: Correlation table from Leap (2004). 

Exemplar 1 

Exemplar 2 

Exemplar N 

Feature 1, f1 

Exemplar 1 

Exemplar 2 

Exemplar N 

Feature 2, f2 

Exemplar 1 

Exemplar 2 

Exemplar N 

Feature 3, f3 

Exemplar 1 

Exemplar 2 

Exemplar N 

Feature 4, f4 

Correlation Correlation Correlation 

 

 

The next type of correlation addressed is intra-correlation or auto-correlation.  This 

explores the relationship between incoming exemplars in a given feature.  Table 2-5 

depicts the autocorrelation of a feature. 
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Table 2-5: Correlation table from Leap (2004). 

Exemplar 1 

Exemplar 2 

Exemplar N 

Correlation 

Correlation 

Correlation 

Correlation 

Feature 1, f1 

 

The six problems considered in this research are encapsulated in Table 2-6.  The icon 

shown for each problem depicts the locations of data centroids for the different classes 

used. 

Table 2-6: Problem Description from Leap (2004). 

 
 

Problem # Problem Name Problem Description 

1   
4 Feature Case Recreates Storm work; average cost 

surface of 5 runs as response 

2   
8 Feature Case Adds noise and redundant features to 

problem 1; changes mean of class 1 

3   
8 Feature with 
Autocorrelation Case 

Adds autocorrelation to problem 2; 
changes mean of class 1 

4   
8 Feature Triangle Case Changes geometry of problem 2 

5   
8 Feature XOR Case Changes geometry of problem 4 

6   
8 Feature XOR with 
Autocorrelation Case 

Adds autocorrelation to problem 5 

 
  

The above problems are all variants of the same structure of correlation matrices and 

mean vectors.  For all problems considered,  where n is the total 

number of features considered in the problem (assumed to be an even integer).  Thus, 

nRFFF ⊂×= 21
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2/
1

nRF ⊂  represents the features observed by classifier 1, the linear discriminant 

function and  represents the features observed by classifier 2, the quadratic 

discriminant function.  Problems 5 and 6 created a space that was too difficult for the 

linear and quadratic classifiers to discriminate.  Thus, a probabilistic neural network will 

also be used as a classifier for these problems and fused with a quadratic function.  

Assuming only two possible classes, class 0 and class 1, let  be the features from 

feature set i in class j where  and  (Leap, 2004).  The mean 

vector for feature set i in class j is represented by .  The correlation of the data is given 

by  for all class i (Leap, 2004).  For the purposes of all data sets 

considered, the covariances of the two classes were set equal to each other ( ).  

The correlation between and within feature sets was created through the use of different 

2/
2

nRF ⊂

j
iF

1
1

0
11 FFF ∪= 1

2
0

22 FFF ∪=

j
iµ

∑ ∑∑
∑∑

⎥
⎦

⎤
⎢
⎣

⎡
= i

FF
i

FF

i
FF

i
FFi

2212

2111

,,

,,

∑ ∑= 10

ρ  values within the correlation matrices.  Four different ρ  will be addressed: 

. and , , , autoindred ρρρρ   The primary correlation is included throughρ .  This correlation 

affects the correlations between features and }9.0,8.0,6.0,4.0,2.0,0.0{∈ρ  (Leap, 2004).  

The correlation due to the addition of a redundant feature is attributed to ;5.0=redρ  

correlation induced by the addition of red and ρρ  is characterized by ;redind ρρρ ×=  the 

correlation within a feature set is described by }9.0,5.0,0.0{∈autoρ  (Leap, 2004).  

Generating multivariate normal data with autocorrelation required the use of some 

equations found in Laine, 2003.  Let z(t) where },...,2,1{ Nt∈ be an exemplar of the 

current feature space with N being the total number of exemplars present (Laine, 2003; 
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Leap, 2004).  The distribution of each exemplar is then ∑ ),0(~)( 0Ntz  (Laine, 2003; 

Leap, 2004).  Letting ∑−== ))**(,0N(~(t) and ,*)1(,* 02 BBIBIA autoauto ερρ  for 

each exemplar t allows the following to hold: )()1(*)( ttzAtz ε+−=  (Laine, 2003; 

Leap, 2004).  Problems 5 and 6 were too difficult for a linear discriminant function to 

separate and they were revisited using a PNN and quadratic discriminant function as 

classifiers.           

2.7.1 Problem 1: 4 Feature Case     

 This is the only problem considering 4 features.  Let  be the features 

observed by classifier 1 and  be the features observed by classifier 2. It follows 

that .  The data was created such that the features within individual 

feature sets were statistically independent as shown by  (Leap, 

2004).  The correlation matrix between features in F

2
1 RF ⊂

2
2 RF ⊂

4
21 RFFF ⊂×=

⎥
⎦

⎤
⎢
⎣

⎡
==∑∑ 10

01
2211 ,,

i

FF

i

FF

i,Fj where ji ≠  is represented by 

where ⎥
⎦

⎤
⎢
⎣

⎡
==∑∑ 0

0
1221 ,, ρ

ρi

FF

i

FF
}9.0,8.0,6.0,4.0,2.0,0.0{∈ρ  (Leap 2004).  The mean 

vectors for all classes and feature sets are as follows: 

  The feature sets for 

problem 1 are distributed as follows: 

.)15.1,15.1( ,)0,0( ,)95.0,95.0( ,)0,0( 1
2

0
2

1
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0
1

TTTT ==== µµµµ
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2.7.2 Problem 2: 8 Feature Case   

         This problem adds a feature vector to problem 1 as noise variables and 

another feature vector as redundant features.  The class 1 mean vector is also changed as 

reflected below: 

.  The 

feature vector distributions remain unchanged symbolically with the only changes 

occurring due to the altered class 1 mean vector and the additional features.  The 

correlation due to  and 

 comprises the overall correlation (Leap, 2004).  

The 

)0,75.0,75.0,75.0( ,)0,0,0,0( ,)0,5.0,5.0,5.0( ,)0,0,0,0( 1
2

0
2

1
1

0
1

TTTT ==== µµµµ

∑ ∑
⎥
⎥
⎥
⎥

⎦
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⎢
⎢
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i

FF

i

FF
red

red

11 22, ,
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==
i

FF

i

FF
ind

ind

21 12, ,

0000
000
000
00

ρ
ρ

ρρ

redind ρρρ *=  comes about due to the fact that feature 2 and feature 3 are correlated 

by design as well as feature 6 and feature 7 as shown by ∑ ∑i

FF

i

FF11 22,
. and 

,
  The addition 

of ρ  between features 1 and 6 causes an induced correlation between features 1 and 7 

with a similar occurrence between features 3 and 5 due to correlation between features 2 

and 5.   

2.7.3 Problem 3: 8 Features with Autocorrelation Case        

    This problem adds autocorrelation to problem 2.  The mean vectors were also 

varied in the hopes of covering a broader spectrum of problem types.  For this problem, 
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the mean vectors are    and 

 respectively.  The covariance matrices remain unchanged from 

problem 2.  The distributions of the feature vectors are the same symbolically with the 

only change present due to the new mean vectors.  The levels of correlation are the same 

as problem 2 such that

,)0,0,0,0(0
1

T=µ ,)0,95.0,95.0,95.0(1
1

T=µ ,)0,0,0,0(0
2

T=µ

T)0,15.1,15.1,15.1(1
2 =µ

},9.0,8.0,6.0,4.0,2.0,0.0{∈ρ  ,95.0=redρ  and redind ρρρ *=  

(Leap, 2004).  Autocorrelation is made present within each feature set at 

}9.0,5.0,0.0{∈autoρ  covering a low, medium, and high setting of within correlation.   

2.7.4 Problem 4: 8 Feature Triangle Case    

   The triangle problem varies the geometry of the problem to consider yet another 

extended environment.  There are four multivariate normal populations created, two from 

class 0 and two from class 1, with three different mean vectors (Leap, 2004).  The 

problem complexity rises making it a little more difficult to separate with a simple 

discriminant function.  The covariance matrices of the data remain the same based on 2 

independent features in each class, 1 redundant feature and 1 noise feature independent of 

all other features.  The feature vectors of these new data sets are defined to be  where 

i is the feature set number, j is the class, and k is the geometric location of the group of 

features (i = 1,2, j = 0,1, k = 1,2) (Leap, 2004).  For instance,  corresponds to the first 

set of features from feature set 1 in class 0 and  corresponds to the second set of 

features from feature set 1 in class 0.  Thus the feature vectors now become 

 and  (Leap, 2004).  The feature vectors are now 

distributed as  for all i, j, k.  The mean vectors reflect the same 

jk
iF

01
1F

02
1F

21 j
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symbolic notation and are changed to be   

  for feature set 1 and  

   for feature set 2 (Leap, 

2004).   

,)0,0,0,0(01
1

T=µ ,

T)0,0,0,15.1(12
2 =µ

)0,95.0,95.0,95.0(02
1

T=µ

,)0,0,0,95.0(11
1

T=µ T)0,0,0,95.0(12
1 =µ ,)0,0,0,0(01

2
T=µ

,)0,15.1,15.1,15.1(02
2

T=µ ,)0,0,0,15.1(11
2

T=µ

2.7.5 Problem 5: 8 Feature XOR Case    

 This again alters the geometry of problem 3.  Problem 3 also generated four 

populations, but now all four have different mean vectors making a linear discriminant 

function alone useless.  As shown in the icon, four multivariate normal populations will 

be generated with equal covariance matrices and different means.  All of the specifics to 

this problem are the same as the triangle problem except for the change in mean vectors.  

The mean vectors have now been changed to the following:  

  ,   

  and  (Leap, 2004).   

,)0,0,0,0(01
1

T=µ

,)0,95.0,95.0,95.0(02
1

T=µ ,)0,95.0,95.0,0(11
1

T=µ )0,0,0,95.0(12
1

T=µ ,

T)0,0,0,15.1(12
2 =µ

)0,0,0,0(01
2

T=µ

,)0,15.1,15.1,15.1(02
2

T=µ ,)0,15.1,15.1,0(11
2

T=µ

2.7.6 Problem 6: 8 Feature XOR with Autocorrelation Case    

 This problem aims at more extended environments through the use of 

autocorrelation added to an already difficult discrimination problem.  The XOR case 

from problem 5 above is now altered to consider correlation within a feature set along 

with correlation across features as visited previously.  There are four multivariate normal 

populations with the same covariance matrices and mean vectors as in problem 5.  The 

only change is the addition of autocorrelation.  The addition of autocorrelation is 
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accomplished in the same manner as problem 3.  The within correlation is once again set 

to }.9.0,5.0,0.0{∈autoρ        
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3. Methodology 

3.1 Introduction 

This chapter details how the research was conducted.  First, the experimental 

design will be described through the use of an example problem.  Next, a new cost 

function will be developed for total cost while considering non-declarations.  Then, a 

heuristic for creating a non-declaration rule from the forced decision ISOC fusion method 

will be demonstrated.  This forced decision heuristic will be continued to the ISOC non-

declaration political correctness method.  The boundary rules for ISOC fusion will be 

addressed through a likelihood ratio heuristic.  Finally, the PNN fusion method will be 

revisited to include the new total cost function. 

3.2 Experimental Design 

This research effort attempted to study the effects of correlation and autocorrelation 

on classifier fusion when non-declarations were introduced.  Two true states of nature 

were considered, hostile and friend, with equal a priori probabilities of each state.  Non-

declarations were introduced both at the individual classifier level as well as at the fused 

classification level.  At the classifier level, a posterior probability threshold of  

was set and an indifference window  was introduced to allow classifiers to non-declare 

exemplars that had a high probability of misclassification; the indifference window was 

denoted  where for 

5.0=T

i
jδ

)( i
jT δ± 05.0)1( ×−= ii

jδ 2,1=j  and 11,,2,1  K=i ; denotes the 

size of the window for classifier j in the i

i
jδ

th configuration.  Thus, exemplars were 

classified in the following manner.  Let  be the posterior probability associated with 

exemplar k being a true hostile where 

kP

exemplarsk #,2,1 K= ; further, let “H” denote the 

times when an exemplar is labeled hostile, “F” indicate a friend classification and “ND” 
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denote undeclared.  When  and the classifier j labels for exemplar k were 

forced to “H” or “F” based on the threshold T and any exemplar equal to T was declared 

“F”; when  and all classifier j labels were forced to “ND” with no hostile 

or friend declarations; otherwise, labels were determined based upon the following: 

if .   

,1=i 01 =jδ

,11=i 5.011 =jδ

⎪
⎪
⎩

⎪⎪
⎨

⎧

−<

+>

ND"" labeled isexemplar   theelse

"" labeled isexemplar   then the,

"" labeled isexemplar   then the,

FTP

HTP
i
jk

i
jk

δ

δ

Figure 3-1 shows an individual classifier indifference window.  The posterior probability of 

being in a given class resembles normal distributions with equal variances, but this 

method of classification could be performed on most distributions.  
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Figure 3-1: Individual Classifier Indifference Window. 

 

Non-declarations were also allowed from the fused classifier output through the 

heuristics described later in this section.  For the PNN, an indifference window was 

introduced after the features had been fused.  Table 3-1 summarizes the design 

considerations used in ISOC forced decision (IFD), ISOC non-declaration political 

correctness heuristic (INDPC) and PNN fusion with non-declarations NFND. 
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Table 3-1: Design Considerations 

Problem # Considerations # Data Sets Classifiers Used 

1   
Sample Size, inter-
correlation 

15; 3 generated sets 
for 5 random seeds 

Linear/Quadratic 

2   
Sample Size, inter-
correlation 

15; 3 generated sets 
for 5 random seeds 

Linear/Quadratic 

3   
Sample Size, inter-
correlation, autocorrelation 

15; 3 generated sets 
for 5 random seeds 

Linear/Quadratic 

4   
Sample Size, inter-
correlation 

15; 3 generated sets 
for 5 random seeds 

Linear/Quadratic 

5   
Sample Size, inter-
correlation 

15; 3 generated sets 
for 5 random seeds 

Linear/Quadratic 
PNN/Quadratic 

6   
Sample Size, inter-
correlation, autocorrelation 

15; 3 generated sets 
for 5 random seeds 

Linear/Quadratic 
PNN/Quadratic 

    

 

The ISOC non-declaration likelihood ratio heuristic (INDLR) described later held sample 

size, problem, and correlation levels constant.  The heuristic was meant to find the 

optimal rules set by ratios rather than complete enumeration.  Table 3-2 summarizes the 

considerations for the second heuristic. 

 

Table 3-2: ISOC Non-Declaration Heuristic (INDLR) Considerations 

 
 
Problem # Considerations # Data Sets Classifiers Used 

3   
Sample size = 250, 

0== autoρρ  
15; 3 generated sets 
for 5 random seeds 

Linear/Quadratic 
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The final experiment conducted was a full factorial design considering the potential 

interactions between subjective costs and chosen correlation levels.  Table 3-3 summarizes 

the design considerations. 

 

Table 3-3: RSM Design Considerations 

 
 

Problem # Considerations # Data Sets Classifiers Used 

3   
Sample size = 250, 

8.0,0=ρ , 9.0,0=autoρ , 
, 20,10=FPC 9,5=FNC , 

 4,1=NDC

15; 3 generated sets 
for 5 random seeds 

Linear/Quadratic

 

 

3.2.1 Test Problem 

An easily separable problem was desired to test the methodology before 

extending to the more difficult problems analyzed in chapter 4.  This problem will be 

referenced throughout this chapter to further explain methods and logic.  The test 

problem was created to mirror the experimental design laid out above.  To ensure small 

sample size problems were not encountered, a sample size of 100 exemplars per class 

was chosen.  The problem was designed such that  

3]3[1 =µ , ,⎥
⎦

⎤
⎢
⎣

⎡
=∑ 35.1

5.11
1 ]75.26[2 =µ ,∑ . ⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

35.1
5.11

2

This geometry created a problem that allowed both a linear and quadratic discriminant 

function to easily separate classes to a reasonable accuracy.          
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3.2.2 ISOC Forced Decision Fusion (IFD)  

The first step in considering non-declarations was to allow individual classifiers 

to label exemplars as unknown.  In order to model non-declarations, a grid of possible 

indifference windows was created for each classifier with the threshold set at T = 0.5.  

The indifference window was then  where  denotes the size of the window for 

classifier j in the i

i
jT δ± i

jδ

th configuration and for05.0)1( ×−= ii
jδ 2,1=j  and .  

Individual classifier labels were applied to posteriors as described in section 3.2 above.  

Once all exemplars were labeled for each classifier, the labels were placed in a combined 

classifier performance matrix in preparation for complete enumeration using ISOC 

fusion.  Next, all possible combinations of hostile and friend rules were tested and fused 

indications were forced to be “H” or “F”.  The total cost equation (2-1) had to be 

modified to consider the probability of non-declarations and their associated cost.  This 

added cost would be a constant for a given grid point of  settings and would only 

affect the overall minimum cost when compared over the range of .  The added 

cost due to non-declarations remained a constant for a specified grid point because non-

declarations were only allowed at the individual classifier level; the posterior probability 

of a classifier classifying a target as non-declared was used in the calculation for total 

cost under the ISOC forced decision method.  Under the assumption of independence of 

the feature sets sent to each classifier, the probability of non-declaration can be calculated 

through the union of the events that the linear function classifies the target as unknown or 

the probability that the quadratic function classifies the target as unknown.  Thus, it can 

be shown that  

11,...,1=i

),( 21
ii δδ

),( 21
ii δδ

)(*)()()()( 2121 NDPNDPNDPNDPNDP −+=  
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where  

          P(ND) = Probability that a target is labeled unknown by either classifier 

  = a target labeled non-declared from classifier i iND

        )()|()()|()( FPFNDPHPHNDPNDP iii ×+×=  for classifier i. 

Note that and  are simply the probabilities that the specified classifier 

non-declares an exemplar for a given grid point .  There are no non-declarations 

allowed from the overall fusion process at this point, only at the individual classifier 

classification level.  The new total cost function in equation (3-1) for IFD is then constant 

for each grid point location.  

)P(ND1 )P(ND2

),( 21
ii δδ

)()()()()(, NDPCFPPFPCFNPHPCC NDFPFNFT ×+××+××=                 (3-1) 

Now that a cost function is created, total cost must be calculated across all grid points for 

all possible hostile rules with  denoting the size of the indifference 

window on classifier j and 512 representing the total number of hostile rules possible.  

Since fused non-declarations were not allowed from the IFD, the associated friend rule to 

a given hostile rule is simply the complement.  This ISOC forced decision process yields 

a set of optimal hostile and friend rules based on minimizing cost for each grid point.  

IFD was conducted on all of the problems shown in Table 3-1.  

51221 ×× ii δδ i
jδ

3.2.3 ISOC Non-Declaration Heuristic for Political Correctness (INDPC) 

The above ISOC forced decision method was extended to allow a fused non-

declared indication.  Once non-declarations were allowed as an output from the fusion 

process, the total cost function from equation (3-1) was modified to be 

3-7 



 

      
 P(F))P(NDP(H))P(NDC            

P(F)CP(FP)P(H)CP(FN)C

FHND

FPFNT, ND

][ ×+××+

××+××=
                      (3-2) 

where  C = Total cost for the rule being tested allowing non-declarations ND T,

     = 5, Cost of a false negative FNC

  = 0.5, a priori probability of a target being hostile )(HP

           = =Probability of a false negative )(FNP ∑
=

×
N

j
jj fHSP

1
)|(

     = 10, Cost of a false positive FPC

)(FP  = 0.5, a priori probability of a target being a friend 

           = = Probability of a false positive )(FPP ∑
=

×
N

j
jj hFSP

1
)|(

    = 1, Cost of a non-declaration NDC

        =  = probability of non-declaring classifier j given truth       )( TNDP ∑
=

×
N

j
jj ndTSP

1
)|(

                   },{ FHT ∈

The above costs were set by a subject matter expert; they will be used throughout this 

research unless otherwise stated.  The heuristic in Figure 3-2 was developed to incorporate 

the new total cost function and find an optimal rule set by filtering the optimal rules 

realized through ISOC fusion with a forced decision. 
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1.  Perform ISOC 
Forced Decision

2. Filter optimal rule set 
to a single H, F, and 

ND rule removing 
nonsensical outputs

Choose hostile rule R 
in global min(CT,FD) with 

smallest row sum 
(friend = 1 – R =      ) 

Elements of R not 
having at least 1 

classifier output as 
hostile become part of 

non-declared rule 

Elements of      not 
having at least 1 

classifier output as 
friend become part of 

non-declared rule 

R

R

Optimal H, F, and ND 
rules chosen.  Select 

optimal grid point 
settings.

3.  Recompute CT,PC
across all grid points 

and locate optimal grid 
point settings for rules 

chosen above 
 

Figure 3-2: ISOC Non-Declaration Heuristic INDPC. 
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The first step in the heuristic is to perform complete enumeration of ISOC forced 

decision fusion as explained in 3.2.2 above.  This results in an optimal minimum cost for 

each grid point and all possible rules combinations that can reach that minimum cost.  

Table 3-4 shows the cost results for step 1 of the example problem.   

 

Table 3-4: Example Problem Grid Point Min Costs. 

δ1 δ2 min(CT,FD)
0 0 0.575
0 0.05 0.59
. . .
. . .
. . .

0.05 0.1 0.4341
0.05 0.15 0.4085
0.05 0.2 0.4231
0.05 0.25 0.4878

. . .

. . .

. . .
0.5 0.45 1.425
0.5 0.5 2.5  

 
 

Once the global minimum cost is located, step 2 can be performed.  This global minimum 

generally yields several possible hostile and friend rule combinations for the specified 

grid point.  These alternate optimals are found because different combinations of 

declarations can yield the same cost.  These rules are then filtered to a single hostile, 

friend and non-declared rule.  To accomplish this, calculate a row sum for all of the 

possible hostile rules in the specified grid point.  Choose the hostile rule with the smallest 

row sum and the associated friend rule (in the case of a tie, the first rule with the smallest 

row sum is selected).  The elements of these are then checked to ensure they are practical.  
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Any hostile rule elements that do not receive at least one “H” output from a classifier 

become part of the non-declared rule; the friend rule is filtered into a friend and non-

declaration rule in the same manner.  It would not be very reassuring to have a fused “H” 

declaration resulting from two classifiers both classifying a target as “F”.  You could call 

this a political correctness heuristic where the elements which are counterintuitive 

become part of the non-declared rule.  Figure 3-3 illustrates this step in the heuristic for the 

example problem. 
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Figure 3-3: Example Problem Rules Selection. 

 

Now that the preferred rules are chosen,  must be tested at all grid points to locate 

the optimal settings based upon the rules chosen.  Thus, using the new cost function 

PCTC ,
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PCTC ,  above, the entire grid space is retested and new costs are calculated.  The costs 

achieved through the heuristic are always at least equal to and most often improved from 

the forced declaration as shown in Table 3-5. 

 

Table 3-5: Example Problem Cost Recalculation. 

 
δ1 δ2 min(CT,FD) min(CT,PC)
0 0 0.58 0.58
0 0.05 0.59 0.58
. . . .
. . . .
. . . .

0.4 0.2 0.81 0.26
0.4 0.25 0.77 0.25
0.4 0.3 0.78 0.25
0.4 0.35 0.78 0.26
0.4 0.4 0.75 0.25
0.4 0.45 0.79 0.26
0.4 0.5 1.63 0.71
. . . .
. . . .
. . . .

0.5 0.45 1.43 0.63
0.5 0.5 2.50 1.00  

 
The maximum cost shown in Table 3-5 for ISOC forced decision at a given grid point is 

2.5 which occurs when all exemplars are classified as friends.  The maximum cost for 

ISOC non-declaration political correctness heuristic (INDPC) is 1 occurring when all 

exemplars are given non-declared labels.  These maximum costs represent the largest 

minimum cost observed for a given grid point.  The minimum cost is bounded for a grid 

point by these maximum costs.    
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3.2.4 Likelihood Ratio ISOC Non-declaration heuristic (INDLR) 

The heuristic that follows is an extension to the likelihood ratio method described 

in 2.5.4.  This method attempts to find the optimal set of hostile, friend and non-declared 

rules for a given grid point ( 21,δδ ).  The first step is to calculate the likelihood of being a 

true hostile by dividing the probability of being a true hostile over the probability of 

being a true friend jjj LRFSPHSP =)|(/)|( .  One difficulty with this step is that some 

elements j of either or and sometimes both might equal zero creating 

either a divide by 0 situation or an indeterminate form

)|( HSP j )|( FSP j

⎟
⎠
⎞

⎜
⎝
⎛

0
0 .  This can be fixed by making 

the following assumptions.  The first is that any time 0)|()|( == FSPHSP jj , this 

combination of outputs from the classifiers has not occurred and there is no information 

as to which declaration would make the most sense.  In these cases, it is assumed that 

these states become part of the non-declared rule ND.  This will not affect the value of 

the cost function while ensuring logical declarations are made.  The next two occurrences 

need to be addressed a little differently.  First, consider 0)|( =HSP j  and .  

In this case, the ratio can be computed and the LR

0)|( >FSP j

j = 0 for all such occurrences.  This 

makes state j highly likely of being a friend which is reasonable since there is no 

estimated probability that this occurrence will be a hostile.  But, when  

and , the ratio cannot be calculated.  It seems the most reasonable label for 

this state would hostile.  This was accomplished in this research by making a temporary 

matrix of  and setting all states with zero probability of being a friend equal 

to

0)|( >HSP j

0)|( =FSP j

)|( FSP j

ε , the smallest possible number in Matlab.  This caused the ratio to be extremely large 
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making this state the most likely to be hostile.  For instance, Table 3-6 shows a notional 

example where all three of the special cases detailed above occurred.  

 

Table 3-6: Classifier Performance Matrix Example. 

State j
Classifier 1 
Indication

Classifier 2 
Indication P(S|H) P(S|F)

1 H H 0.46 0.02
2 H U 0.15 0.06
3 H F 0 0.12
4 U H 0.23 0
5 U U 0 0
6 U F 0.06 0.09
7 F H 0.06 0.07
8 F U 0.03 0.15
9 F F 0.01 0.49  

 

 
Let  represent the likelihood ratio for state j with [i] denoting the i],[ijj LRLR = th order 

statistic for LRj.  The output state j = 4 (U-H) where classifier 1 declared the target as 

unknown and classifier 2 declared it hostile only occurred on exemplars that were true 

hostiles.  The likelihood ratio for this state was calculated by using ε such that 

]  became the largest ordered likelihood ratio.  On the other hand, for output 

state j = 3 (H-F) when classifier 1 declared the exemplar hostile and classifier 2 declared 

the exemplar friend, there were no occurrences of this state when an exemplar was a true 

hostile.  The corresponding likelihood ratio became 

1[,44 LRLR =

]8,[33 LRLR =  tying state 6 for the 

smallest likelihood ratio of being hostile.  There were no instances in which state 5 (U-U) 

occurred so its likelihood ratio was ]9,[55 LRLR =  and it will become part of the non-

declared rule.  Once the states with no recorded instances of being friend were changed 
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toε , the likelihood ratio could be calculated and sorted from largest to smallest.  Table 3-7 

shows the sorted likelihood ratios from the notional example above.  Note that the 

temporary , but this is only used as a proxy to calculate the likelihood 

ratios. 

∑ ≠1)|( FSP j

 

Table 3-7: Sorted Likelihood Ratios Example. 

 

State j
Classifier 1 
Indication

Classifier 2 
Indication P(S|H) P(S|F) temp P(S|F) LRj

4 U H 0.23 0 ε = 1E-210 2.3E+209
1 H H 0.46 0.02 0.02 23
2 H U 0.15 0.06 0.06 2.5
7 F H 0.06 0.07 0.07 0.857143
6 U F 0.06 0.09 0.09 0.666667
8 F U 0.03 0.15 0.15 0.2
9 F F 0.01 0.49 0.49 0.020408
3 H F 0 0.12 0.12 0
5 U U 0 0 ε = 1E-210 0  

 
 
Now that the states have been sorted according to their likelihood ratios (hostile to 

friend), the total cost of misclassification can be calculated; the likelihood ratio of being a 

friend is calculated by .  The total cost function from equation (3-2) 

applies to this heuristic.  For the example given in this section, the costs and prior 

probabilities were assumed to be the following: C

)|(/)|( HSPFSP jj

FN = 5, CFP = 10, .  

Let  represent the cumulative probability of a state given hostile based on 

the likelihood ratio order statistics above.  The probabilities for false positives and false 

negatives were calculated as follows: 

0.5  P(F)  P(H) ==

)|( ][ HSP jcum

))|(1()( ][][ HSPFNP jcumj −=  and 

 where j represents state j of the classifier performance matrix and )|()( ][][ FSPFPP jcumj =
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)|( ][ TSP jcum  is the cumulative probability of state [j] given truth },{ FHT ∈ .  The costs 

associated with the sorted classifier performance matrix are shown in Table 3-8.   

 

Table 3-8: Sorted Classifier Performance Matrix Costs. 

 

State j
Classifier 1 
Indication

Classifier 2 
Indication P(S|H) P(S|F) Pcum(S|H) Pcum(S|F) CT

4 U H 0.23 0 0.23 0 1.925
1 H H 0.46 0.02 0.69 0.02 0.875
2 H U 0.15 0.06 0.84 0.08 0.8
7 F H 0.06 0.07 0.9 0.15 1
6 U F 0.06 0.09 0.96 0.24 1.3
8 F U 0.03 0.15 0.99 0.39 1.975
9 F F 0.01 0.49 1 0.88 4.4
3 H F 0 0.12 1 1 5
5 U U 0 0 1 1 5  

 
The total cost of misclassification (CT) in Table 3-8 shows the top three states are to be 

entered in the hostile rule leaving the remaining states for declaration as friend.  This is 

the least expensive set of rules possible while only declaring targets friend or hostile 

(currently  for all ).  The heuristic to this point has followed the logic 

of Ralston (1998).  From the above example, the associated hostile and friend rules are 

shown in Table 3-9. 

0nd j = N,1,2,j K=
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Table 3-9: Optimal Hostile and Friend rules. 

State j
Classifier 1 
Indication

Classifier 2 
Indication P(S|H) P(S|F) CT Hostile Friend H F

4 U H 0.23 0.00 1.93 1 0 h[1] f[1]

1 H H 0.46 0.02 0.88 1 0 h[2] f[2]

2 H U 0.15 0.06 0.80 1 0 h[3] f[3]

7 F H 0.06 0.07 1.00 0 1 h[4] f[4]

6 U F 0.06 0.09 1.30 0 1 h[5] f[5]

8 F U 0.03 0.15 1.98 0 1 h[6] f[6]

9 F F 0.01 0.49 4.40 0 1 h[7] f[7]

3 H F 0.00 0.12 5.00 0 1 h[8] f[8]

5 U U 0.00 0.00 5.00 0 1 h[9] f[9]  

 
Notice that the state when both classifiers non-declare a target (U-U) falls into the friend 

rule for now, but it accounts for zero cost.  This element will become part of the non-

declared rule at the end of this heuristic.  The double line in the table shows where the 

decision to add or remove the next state of the hostile or friend rules would increase the 

total cost.  Now that the baseline cost has been determined, the heuristic for finding the 

best combination of hostile, friend and non-declared rules can be utilized.  This is 

accomplished by testing the removal of different states from both the hostile and friend 

rules for use in the non-declared rule.  Hostile rule elements h[j] will be removed in 

sequence and cost will be calculated with element [j] being part of the non-declaration 

rule based upon their likelihood ratios.  For simplicity, define a new index for rule 

elements based on their order statistic from the likelihood ratio calculations.  Define 

 as the hostile, friend and non-declared rules respectively.  Let hNDFH  and ,, [k] be the 

kth ordered element of the hostile rule H where TCM is at a minimum and f[m] be the 

 ordered element of based on the order statistic index where 

 and .  The element h

stk )1( + F

)(minarg][ ][
][

i
j

Hj
LRk

∈
= )(maxarg][ ][

][

i
j

Fj
LRm

∈
= [j] associated with the 
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smallest likelihood ratio will be the first candidate for removal; likewise, the first friend 

element tested is based on the element f[j] = 1 associated with the largest likelihood ratio.  

Let CTi represent the temporary total cost of misclassification i calculated using equation 

(3-2).  The ordered element contributing the largest decrease in total cost will be included 

in the non-declared rule.  This process will be iterated until either nd[j] = 1 for all [j] or 

the addition of another element to the non-declared rule would increase the minimum 

total cost.  From the example in Table 3-9, the first hostile element to be tested is h[3] 

where h[3] = 0 and nd[3] = 1; the first friend element for comparison is f[4] where f[4] = 0 

and nd[4] = 1.  The total cost function will decide whether either state should remain part 

of the non-declared rule or not.  The cost calculations in the algorithm that follows are 

based upon equation (3-2).  The non-declared rule is incremented as follows: 

1.  Create non-declared rule initialized to zero,  TND ]0,...,0,0[=

2.  Find CT,LR from equation (3-2) 

3.  Test h[k] element of the hostile rule versus fm element of the friend rule 

a.  Set h[k] = 0, nd[k] = 1 

b.  Calculate CT1 from equation (3-2) 

c.  Set h[k] = 1, nd[k] = 0, f[m] = 0, nd[m] = 1 

d.  Calculate CT2 from equation (3-2) 

e.  Set nd[m] = 0, f[m] = 1 

4.  If min(CT1,CT2) < CT,LR

a.  If CT1 ≤  CT2

3-18 



 

i.  Set nd[k] = 1, h[k] = 0, CT,LR = CT1, CT1 = 0, [k] = [k] – 1 

ii.  Return to step 3 

5.  Else if CT2 < CT1

a.  Set nd[m] = 1, f[m] = 0, CT,LR = CT2, CT2 = 0, [m] = [m] + 1 

6.  Return to step 3 

Else if  )C,min(C  C T2T1LRT, <

If any 0)|()|( == FSPHSP jj , 1nd j = , 1h j = , f 1j =  

End  

Once the above algorithm is completed, the expected minimum cost rule set for the 

specified grid point is created.  The total cost found from this method will be 

denoted .  This method could be implemented to the non-declaration heuristic in 

Figure 3-2 starting at step 2 to find the global minimum cost rules.  The flowchart in Figure 

3-4 further encapsulates the likelihood ratio process for a given grid point. 

LRTC ,
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Figure 3-4: ISOC Fusion rule selection through likelihood ratios. 
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3.2.5 RSM Cost experiment 

It became readily apparent that there were some subjective areas of this research 

that could affect optimal rules and costs.  This subjective nature was tested through the 

use of a response surface methodology experiment.  The costs of misclassification were 

based on a best guess, but changes could drastically affect the outcome of the different 

experiments.  These costs and their interactions with correlation, both intra-correlation 

and inter-correlation, were considered.  The sample size was held constant at 250 

exemplars per class.  In addition, the grid points tested were  for  

and .  This was considered enough grid points to get a clear picture of the 

sample space.  The optimal rules for each grid point were calculated using the likelihood 

ratio heuristic (IND

1.0)1( ×−= ii
jδ 2,1=i

6,...,1=j

LR); these rules remained relatively constant across all grid points.  

The problem was designed as a full factorial with five factors.  The ranges for the 

variables are as follows: }8.0,0{inter ∈ρ , }9.0,0{intra ∈ρ , }20,10{∈FPC , , 

.  The ranges for the costs were designed to ensure the following generally 

accepted inequality: .  The experimental response variable was C

}9,5{∈FNC

}4,1{∈NDC

NDFNFP CCC >>> T,LR.        

3.2.6 PNN Non-Declaration Fusion Method (NFND) 

The PNN fusion method takes the posteriors output from the classifiers and uses 

them as features.  One-third of the posterior probabilities are fed to the PNN from the test 

set to train the network.  The validation set plus the remaining two-thirds of the test set 

exemplars are used for validation.  The spread parameter was tested to achieve the 

highest possible accuracy.  The outputs from the PNN were then put through an 

additional radial basis function and turned into posterior probabilities using Baye’s rule.  

Decisions for classifications were once again made based on  although there is iT δ±
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now only one indifference window  for 5.0)1(( ×−= iiδ )11,...,1=i  under consideration.  

As stated earlier, if  for all i and k.  Some 

validation set exemplars were such outliers that their associated PNN activations were 

zero.  These were automatically assigned equal posterior probabilities of class 

membership, .  When 

⎪
⎩

⎪
⎨

⎧

−<

+>

ND"" labeled isexemplar   theelse
"" labeled isexemplar   then the,

"" labeled isexemplar   then the,

FTP

HTP
i

k

i
k

δ

δ

5.0=kP 1=i ,  and these exemplars were forced to be “F” 

classifications since the cost of a false negative was considered to be more acceptable 

than the cost of a false positive.  When , 0  and these exemplars with equal 

posterior probabilities fell within the indifference window and classified as “ND”.  Note 

that this method allows “H”, “F” and “ND” indications.  Figure 3-5 shows the PNN non-

declaration classifier fusion process NF

0=iδ

1>i >iδ

ND as used in this research. 
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Figure 3-5: PNN Classifier Fusion Process (NFND). 

 
The total cost of misclassification is again used as a cost function and allows a 

comparison between methods considered in this research.  Total costs are compared in 

the results section to find optimal indifference windows for particular runs.  Accuracy 

and the percent of non-declared will also be addressed. 
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3.3 Summary 

This chapter introduced the framework for this research.  The experimental design 

was explained as laid out in Leap (2004).  The forced decision ISOC method was 

introduced as well as a heuristic to adapt the forced decision ISOC to incorporate a non-

declared rule.  The ISOC method using likelihood ratios was described.  Next, the RSM 

experiment considering cost ranges and their interaction with correlation levels on TCM 

was introduced.  Finally, the PNN fusion method was discussed.  Table 3-10 shows the 

methods introduced in this chapter with their associated acronyms and cost labels. 

 

Table 3-10: Acronyms and Costs. 

 
Method Acronym Cost 

ISOC     ISOC     CT,I

ISOC Forced Decision     IFD     CT,FD

ISOC Non-Declarations "Political Correctness"     INDPC     CT,PC

ISOC Non-Declarations Likelihood Ratio     INDLR     CT,LR

PNN Non-Declarations    NFND     CT,NND  
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4. Findings and Analysis 

4.1 Introduction 

In this chapter, the three ISOC fusion heuristics developed in Chapter 3 were 

compared and contrasted to the PNN fusion method by their classification accuracies and 

costs found by executing the problems described in Table 2-6.  Findings are also 

introduced for the RSM study investigating the interactions between cost and correlation.   

4.2 General Findings 

After a thorough investigation of the different methods, some common results were 

found.  The first was that there was a consistent relationship between the total costs of 

misclassification achieved.  It will be shown later in this section that 

 in a statistically significant sense where  is the TCM for the 

ISOC forced decision method (IFD),  is the TCM associated with the ISOC non-

declaration political correctness heuristic (IND

NNDTPCTFDT CCC ,,, ≥> FDTC ,

PCTC ,

PC), and  represents the TCM for 

the PNN non-declarations fusion method (NF

NNDTC ,

ND).  The second result displayed the 

difference between method assumptions; the ISOC methods assume independence and do 

not react much to correlation while neural networks such as PNN fusion methods do not 

assume independence and react accordingly.  This further supports the research of Storm 

et al., (2003) and Leap et al., (2004).  It was discovered in problems 5 and 6 that the 

classifiers chosen were unable to adequately label exemplars creating disconcerting 

findings.  The next sections of this chapter will step through each problem individually 

and further explore the analysis performed for this research effort. 
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4.3 Problem 1 Results: 4 Feature Case    

This data set was applied to the fusion processes described in Chapter 3.  Problem 1 

costs were consistent with the above inequality .  Problem 1 

demonstrated the IND

NNDTPCTFDT CCC ,,, ≥>

PC ability to reach a common optimum hostile rule as sample size 

was increased for a set correlation ρ .  Table 4-1 shows the optimal ISOC non-declaration 

political correctness heuristic optimal hostile rules for a set sample size of 25 exemplars 

per class and 0=ρ .  The indications are from classifier 1 (linear discriminant function) 

and classifier 2 (quadratic discriminant function) (L-Q), respectively.  The run denotes 

the different random seeds used.   

 

Table 4-1: INDPC Optimal Hostile Rules (Sample Size = 25, ρ = 0). 

 

Run H-H H-U H-F U-H U-U U-F F-H F-U F-F
1 1 1 0 0 0 0 0 0 0
2 1 1 0 0 0 0 1 0 0
3 1 0 1 1 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0
5 1 1 1 0 0 0 1 0 0

Indications (Linear - Quadratic)

 

 

The hostile rules above are variable across random number streams.  As sample size is 

increased, the optimal rule set becomes constant.  In fact, using a sample size of 500 

exemplars per class, the optimal hostile rules for INDPC are consistent only declaring a 

target as hostile if both classifiers indicate that it is hostile.  Table 4-2 compares the 

optimal hostile rules over 5 random seeds with a sample size of 500 exemplars per class.   
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Table 4-2: INDPC Optimal Hostile Rules (Sample Size = 500, ρ = 0). 

Run H-H H-U H-F U-H U-U U-F F-H F-U F-F
1 1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0

Indications (Linear - Quadratic)

 

 

The same results were noticed when varying sample size for 9.0=ρ .  Table 4-3 shows the 

variable hostile rules found for a sample size of 25 exemplars per class.   

 

Table 4-3: INDPC Optimal Hostile Rules (Sample Size = 25, ρ = 0.9). 

 

Run H-H H-U H-F U-H U-U U-F F-H F-U F-F
1 1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 1 0 0
3 1 0 0 1 0 0 1 0 0
4 1 1 0 0 0 0 1 0 0
5 0 1 0 1 0 0 1 0 0

Indications (Linear - Quadratic)

 

 

Some of the most obvious states are confused with the addition of inter-correlation.  The 

output state when both classifiers declare a target as hostile is not included in some of the 

optimal hostile rule.  Once sample size is sufficiently increased to 500 exemplars per 

class, the rules stabilize to two common optimal hostile rules as shown in Table 4-4. 
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Table 4-4: INDPC Optimal Hostile Rules (Sample Size = 500,  = 0.9). 

Run H-H H-U H-F U-H U-U U-F F-H F-U F-F
1 1 0 0 0 0 0 1 0 0
2 1 0 0 0 0 0 1 0 0
3 1 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 1 0 0
5 1 0 0 0 0 0 0 0 0

Indications (Linear - Quadratic)

 

 

Thus, it can be inferred that as sample size increases, the optimal hostile rule becomes 

more invariable for INDPC.  There were some volatile states, but overall the rule steadied 

itself.  The other problems also demonstrated this characteristic. 

 The indifference windows became more stable as sample size increased in this 

problem.  This is a useful result to locate optimal grid point settings for the chosen rule 

set.  Figure 4-1 shows a histogram of 1δ  (indifference window on classifier 1) varied from 

sample sizes of 25 to 500.  The optimal indifference window falls around 0.3 with high 

sample size.  The histogram of sample size 25 is much more difficult to determine an 

optimal grid point setting.   
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Figure 4-1: Indifference Window Comparison. 

 
 

This problem was relatively easily separable and as a result, the INDPC (ISOC non-

declaration political correctness heuristic) was comparable to the PNN fusion NFND and 

there was no statistical difference between the two methods.  Table 4-5 shows the paired t-

test conducted on the difference in mean costs between the different methods while 

varying sample size and ρ .  CT,FD represents the costs achieved through the ISOC forced 

decision heuristic; CT,PC represents the costs from ISOC non-declaration political 

correctness heuristic and CT,NND accounts for the total cost of misclassification found 

through PNN fusion allowing non-declarations.  The highlighted rows in Table 4-5 

represent the only difference in mean costs that were not rejected.  All other rows in the 

table were statistically different at significance level 05.0=α . 

 

Indifference window 
1 
δ 1 

δ Indifference window Indifference window 
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Table 4-5: Paired t-tests of Difference in Mean Costs. 

Methods Sample Size p p-value lower CI upper CI t-statistic t-critical
CT,PC –CT,NND All All 0.006 0.0073 Inf 2.5153 ± 1.9622

25 0.0 0 0.4 0.9 5.9 ± 2.0017
CT,FD-CT,PC 25 0.9 0 0.4 1.0 4.4 ± 2.0017
CT,FD-CT,NND 25 0.0 0 0.4 0.9 5.9 ± 2.0017
CT,FD-CT,NND 25 0.9 0 0.5 1.2 5.1 ± 2.0017
CT,PC-CT,NND 25 0.0 0.6 -0.1 0.2 0.5 ± 2.0017
CT,PC-CT,NND 25 0.9 0.1 0 0.3 1.6 ± 2.0017

500 0.0 0 0.5 0.6 14.4 ± 2.0017
500 0.9 0 0.6 0.9 12.0 ± 2.0017
500 0.0 0 0.5 0.6 14.4 ± 2.0017
500 0.9 0 0.6 0.9 11.4 ± 2.0017
500 0.0 0 0.1 0.1 8.7 ± 2.0017
500 0.9 0 -0.1 0.0 -2.4 ± 2.0017

CT,FD-CT,PC

CT,FD-CT,NND
CT,FD-CT,NND

CT,PC-CT,NND
CT,PC-CT,NND

CT,FD-CT,PC

CT,FD-CT,PC

Methods Sample Size p p-value lower CI upper CI t-statistic t-critical
CT,PC –CT,NND All All 0.006 0.0073 Inf 2.5153 ± 1.9622

25 0.0 0 0.4 0.9 5.9 ± 2.0017
CT,FD-CT,PC 25 0.9 0 0.4 1.0 4.4 ± 2.0017
CT,FD-CT,NND 25 0.0 0 0.4 0.9 5.9 ± 2.0017
CT,FD-CT,NND 25 0.9 0 0.5 1.2 5.1 ± 2.0017
CT,PC-CT,NND 25 0.0 0.6 -0.1 0.2 0.5 ± 2.0017
CT,PC-CT,NND 25 0.9 0.1 0 0.3 1.6 ± 2.0017

500 0.0 0 0.5 0.6 14.4 ± 2.0017
500 0.9 0 0.6 0.9 12.0 ± 2.0017
500 0.0 0 0.5 0.6 14.4 ± 2.0017
500 0.9 0 0.6 0.9 11.4 ± 2.0017
500 0.0 0 0.1 0.1 8.7 ± 2.0017
500 0.9 0 -0.1 0.0 -2.4 ± 2.0017

CT,FD-CT,PC

CT,FD-CT,NND
CT,FD-CT,NND

CT,PC-CT,NND
CT,PC-CT,NND

CT,FD-CT,PC

CT,FD-CT,PC

 

 

Note that INDPC was statistically less than NFND for sample size of 500 and ρ = 0.9 as 

shown in the last row of the table although this is a small difference in a practical sense.  

There were instances such as this when the ISOC heuristics were able to outperform the 

neural networks, but in general the opposite remained true.   

 Cost and accuracy were compared through the use of a parametric analysis.  The 

parametric analysis compared average costs and accuracies across all sample sizes for 

ISOC, IFD, INDPC, NF, and NFND.  Since lower costs were preferred, the average costs 

were transformed by
)(max

)1(

ii

i
i C

C
C

−
= .  Each method generates a score through the 

following equation: ii AC ×+×− αα )1(  where Ai represents the average accuracy for 

method i and α is varied along the x-axis to compare the methods.  When α = 0, cost is 

the most important factor and when α = 1, accuracy becomes the most important.  

Otherwise, α represents the weighting for the two factors being compared.  Figure 4-2 

displays these average scores varied across α for no correlation. 
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Figure 4-2: Parametric Analysis of Cost and Accuracy (ρ= 0.0). 

 

INDPC outperforms all other methods across all weightings α, although there is no 

statistical difference between INDPC and NFND.  The above analysis varies when 

correlation increases.  Figure 4-3 shows the five methods with high levels of correlation. 
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Figure 4-3: Parametric Analysis of Cost and Accuracy (ρ = 0.9). 

 

The above parametric analysis shows that the PNN fusion methods react to changes in 

levels of correlation where the ISOC fusion methods do not.  INDPC is now statistically 

better than all other methods across all weightings of cost and accuracy for problem 1.   

4.4 Problem 2 Results: 8 Feature Case    

This data set was applied to the fusion processes described in chapter 3.  This 

problem will be used to show the cost inequality described in the general findings section 

above ( ).  Table 4-6 shows the costs as sample size and correlation 

were varied. 

NNDTPCTFDT CCC ,,, ≥>
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Table 4-6: ISOC Heuristics Vs. NFND Costs. 

Run Sample Size ρ CT,FD CT,PC CT,NND

1 25 0.00 1.28 0.74 0.75
1 25 0.20 1.53 0.68 0.69
1 25 0.40 2.50 0.92 0.35
1 25 0.60 1.96 1.00 0.67
1 25 0.80 2.32 1.00 0.77
1 25 0.90 2.26 0.90 1.00
1 50 0.00 1.83 0.78 0.73
1 50 0.20 1.89 0.95 0.60
1 50 0.40 2.00 0.92 0.69
1 50 0.60 2.50 0.94 0.72
1 50 0.80 2.24 0.90 0.90
1 50 0.90 2.25 0.90 0.87
. . . . . .
. . . . . .
. . . . . .
5 500 0.80 2.28 0.97 0.78
5 500 0.90 2.24 0.93 0.87
5 1000 0.00 1.88 0.95 0.66
5 1000 0.20 1.96 0.94 0.67
5 1000 0.40 2.15 0.94 0.75
5 1000 0.60 2.07 0.93 0.78
5 1000 0.80 2.20 0.93 0.81
5 1000 0.90 2.33 0.95 0.83  

 

Notice that the above inequality holds for most instances although there are a few times 

when  in the table.  Further inspection of the costs through the use of 

paired t-tests establishes that the means for the outputs of the three classifiers are 

statistically different with  holding as stated above.  Table 4-7 displays the 

results of the two-tailed paired t-tests conducted on  and .  Sample size was 

varied across all sample sizes tested, but 

NNDTPCT CC ,, <

NNDTPCT CC ,, ≥

PCTC , NNDTC ,

ρ  was displayed at the extremes }9.0,0{=ρ .  

The null hypothesis tested is that the means are equal.  The p-value displays the 

probability of observing the given result by chance given that the null hypothesis is true; 

p-values less than 05.0=α indicate no statistical difference in means.  The high and low 
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CI’s in the table denote the confidence interval on the mean of NNDTPCT CC ,, − .  A 

confidence interval that contains zero represents an observed result that fails to reject the 

null hypothesis.  Finally, the t statistic and t critical value compare the difference in 

means.  A t statistic that is greater than the t critical results in rejecting the null hypothesis 

that there is no difference between the means.   

 

Table 4-7: Paired T-Test of  and  Problem 2 Costs. NNDTC , PCTC ,

 
Sample Size ρ p-value Low CI High CI t-statistic t-critical

25 0.0 0.12 -0.05 0.37 1.75 ± 2.011
50 0.0 0.03 0.03 0.34 2.72 ± 2.011
100 0.0 0.00 0.22 0.30 14.42 ± 2.011
250 0.0 0.00 0.17 0.32 7.70 ± 2.011
500 0.0 0.00 0.25 0.32 19.37 ± 2.011
1000 0.0 0.00 0.27 0.34 18.29 ± 2.011
25 0.9 0.05 0.00 0.54 2.33 ± 2.011
50 0.9 0.02 0.03 0.19 3.06 ± 2.011
100 0.9 0.00 0.10 0.22 6.35 ± 2.011
250 0.9 0.00 0.07 0.17 5.20 ± 2.011
500 0.9 0.01 0.03 0.14 3.49 ± 2.011
1000 0.9 0.00 0.10 0.18 7.71 ± 2.011  

 

Only one instance in the table fails to reject the null at sample size = 25 and ρ = 0.  All of 

the other observations show a statistical difference between the mean of  

and .  A paired t-test of all of the observations from problem 2 also shows that the 

means for all three costs are statistically different as shown in Table 4-7.  Thus, it can be 

inferred that the cost relationship holds under differing levels of correlation.  A graphical 

representation of the results from the paired t-tests can be seen in Figure 4-4, Figure 4-5, and 

Figure 4-6.  ISOC non-declaration political correctness heuristic costs (IND

NNDTC ,

PCTC ,

PC), ISOC 

forced decision costs (IFD) and PNN fusion (NFND) costs are paired across sample sizes 
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and levels of correlation ρ .  Clusters of points above the 45o line indicate that Y values 

dominate X; X values dominate Y when the majority of the paired observations fall 

below the 45o line.  Figure 4-4 graphically depicts the costs relationship between PNN 

fusion allowing non-declarations and the ISOC non-declaration political correctness 

heuristic.   
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The ISOC non-declaration political correctness heuristic costs are always greater than the 

PNN fusion allowing non-declarations.  The centroid of the cluster of data falls 
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graphical approach in Figure 4-5, it is clear that the ISOC forced decision heuristic falls 

short of the other two methods because its costs completely dominate the other 

approaches.  Figure 4-5 shows ISOC forced decision paired with the ISOC non-declaration 

political correctness heuristic. 
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Figure 4-5: Problem 2 IFD and INDPC Ordered Pairs. 

 

The centroid for this pairing of data falls at  and it is clear that the ISOC 

forced decision costs are much higher than the ISOC non-declaration political correctness 

heuristic costs.  Following the logic of the original inequality 

suggested,  and the plot of ISOC forced decision costs versus PNN 
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fusion costs should and does show the same story.  ISOC forced decision is the most 

costly method of labeling targets as seen again in Figure 4-6. 
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Figure 4-6: Problem 2 IFD and NFND Ordered Pairs. 

  

The centroid for Figure 4-6 is located at  again showing the cost relationship 

holding true to the inequality.   

)72.0,05.2(

 Problem 2 also followed the pattern displayed for problem 1 of a global hostile 

rule being reached as sample size was increased.  In fact, problem 2 reached a single 

hostile rule comprised of state (H-H) for a sample size of 500 exemplars per class 

regardless of the amount of correlation introduced.  
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4.5 Problem 3: 8 Feature with Autocorrelation Case   

This data set was applied to the fusion processes described in Chapter 3.  Problem 3 

held true to the inequality described in the general findings section 

with .  Figure 4-7 shows the average costs incurred from each of the 

three methods at varied levels of inter-correlation 

NNDTPCTFDT CCC ,,, ≥>

ρ and autocorrelation autoρ .     
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Figure 4-7: Cost Comparisons Between Methods. 

 
 

The error bars on Figure 4-7 represent a 95% confidence interval of the true mean 

cost.  Consider the ISOC forced decision costs which represent the largest costs in the 

above figure.  The ISOC forced decision error bars all overlap showing that the average 

IFD costs are not statistically different.  The error bars on ISOC forced decision are all 
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above the error bars for INDPC and NFND fusion showing that ISOC forced decision is 

statistically more costly than INDPC and NFND fusion.  Next, consider the bars associated 

with INDPC.  There is no clear difference between any of the individual error bars.  Thus, 

ISOC non-declarations political correctness heuristic is robust to correlation in this 

problem.  Finally, consider the PNN allowing non-declarations error bars.  There is a 

statistical difference between NFND fusion costs when ρ and autoρ  ),( autoρρ are changed 

from o .  The NF)0.0 ,9.0(  t )9.0 ,0.0( ND performed consistently with the exception of the 

improvement when autocorrelation was high.  INDPC and NFND were statistically 

different at  further showing that the NF)9.0 ,0.0( ND was able to perform well at this 

setting.  Otherwise, there was no statistical difference between the two costs.  Thus, the 

inequality stated above holds true ( ).  When correlation levels were 

increased and sample size was set at 500 exemplars per class, the hostile rule had a 

tendency to include the output state  as shown in Table 4-8.  This could 

represent the fact that the correlation of the data is such that the quadratic function is able 

to discriminate between the classes more often. 

NNDTPCTFDT CCC ,,, ≥>

)"","(" HF

 

Table 4-8: Optimal Hostile Rules for Sample Size = 500, ρ = 0.9. 

Run H-H H-U H-F U-H U-U U-F F-H F-U F-F
1 1 0 0 0 0 0 1 0 0
2 1 0 0 0 0 0 1 0 0
3 1 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 1 0 0
5 1 0 0 0 0 0 0 0 0

Indications (Linear - Quadratic)
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The percent of non-declarations resulting from NFND were dependent upon the 

level of correlation.  As correlation increased, the NFND indifference window also grew 

causing more non-declared exemplars; the result is the increase in costs shown in Figure 

4-7.  Figure 4-8 compares the optimal 
NDNFδ  locations when 0=ρ  plotted versus 

when 9.0=ρ .  A triangle in the plot represents the optimal indifference window size for 

the PNN with non-declarations paired between no correlation and 0.9 correlation; each 

triangle is an instance of sample size and random seed (5 sample sizes x 5 runs = 25 

points).  The size of the window is in direct relation to the percent of non-declarations.  

The figure shows that the PNN fusion method indifference window increases as 

correlation increases.  Thus, the PNN reacted to increases in correlation while the ISOC 

fusion methods declarations were consistent; PNN fusion had to non-declare more 

exemplars as correlation levels were increased in reaction to the correlation and ISOC 

heuristics assumed independence and remained relatively unchanged.     
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Figure 4-8: PNN Indifference Window Locations. 

 
 

 

The INDPC method’s indifference window settings were relatively robust to the 

correlation.  Figure 4-9 compares the optimal locations of the indifference window on the 

linear classifier while varying inter-correlation.  The histograms are very similar further 

supporting the robustness of the ISOC fusion methods to correlation due to the 

assumption of independence.  
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Figure 4-9: Linear Indifference Window varied by ρ . 

 

 

This problem also displayed the PNN fusion with non-declaration method’s 

decrease in accuracy associated with induced levels of correlation; this NFND “weakness” 

is consistent with the past research efforts of Storm et al., (2003) and Leap et al., (2004) 

showing the PNN reacts to levels of correlation.  As the levels of correlation were 

increased, the NFND method’s ability to classify incoming exemplars was hampered in 

some instances.  The changes in correlation levels had less of an effect on the ISOC non-

declaration political correctness heuristic since it assumes independent features.  ISOC 

forced declarations had lower accuracies as expected because the method does not allow 

any fused non-declarations.  INDPC and NFND were both able to improve accuracy by 

ridding exemplars with high probabilities of misclassification.  Figure 4-10 shows pair-wise 

accuracies for NFND at the extremes for correlation ( )0,0( == autoρρ  

to )9.0,9.0( == autoρρ ). 
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Figure 4-10: NFND  Accuracy (No Correlation vs. High Correlation). 

        

Further inspection through a paired t-test shows a statistical difference between the means 

for PNN fusion with and without correlation (both ρ  and autoρ ).  Dividing the space from 

Figure 4-10 to consider all four extreme points for }9.0,0{∈ρ  and }9.0,0{∈autoρ  generated 

Figure 4-11.   
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Figure 4-11: PNN Fusion Accuracy Pairwise Comparison of Correlation. 

 

The difference is not as clear in the graphs in Figure 4-11 as it was in the cost comparisons, 

but two tailed paired t-tests of all four of the above plots proved that the only statistical 

difference in accuracies occurred when 0=autoρ  and ρ was varied between 0 and 0.9 

(the upper left plot of Figure 4-11).  The first row of Table 4-9 shows this occurrence with a 

p-value less than 0.05, a t-statistic greater than the t-critical value and a confidence 

interval which does not contain 0.   
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Table 4-9: PNN Fusion Accuracy Pair-wise T-test Results. 
ρx ρauto, x ρy ρauto, y p-value CI Low CI High t-statistic t-critical
0.0 0.0 0.9 0.0 0.000 0.052 0.109 5.677 ±  2.001
0.0 0.0 0.0 0.9 0.058 -0.001 0.075 1.933 ±  2.001
0.0 0.9 0.9 0.9 0.240 -0.019 0.074 1.188 ±  2.001
0.9 0.0 0.9 0.9 0.414 -0.055 0.023 -0.823 ±  2.001  

 

Thus, the PNN was susceptible to inter-correlation assuming that there was no 

autocorrelation present.  Otherwise, the PNN accuracies remained statistically similar.   

4.6 Problem 4: 8 Feature Triangle Case          

This data set was applied to the fusion processes described in Chapter 3.  This 

problem also held the same characteristics as discussed in the general findings section.  

The costs were found to follow the general inequality  in a 

statistical sense through paired t-tests.  In addition, the optimal hostile rules followed the 

generally observed improvement as sample size increased as shown in problem 1.  

Further review of these hostile rules showed that the rules were more variable for high 

levels of correlation; the rules remained relatively constant when there was no correlation 

present for all sample sizes.  Figure 4-12 shows a histogram comparing the optimal hostile 

rules as 

NNDTPCTFDT CCC ,,, ≥>

ρ  is varied.  Table 4-10 displays the numbered optimal hostile rules found using 

the ISOC non-declaration political correctness heuristic relating to Figure 4-12. 
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Table 4-10: Problem 4 Numbered Optimal Hostile Rules. 

Rule # H-H H-U H-F U-H U-U U-F F-H F-U F-F
2 1 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0

11 1 1 0 0 0 0 0 0 0
13 1 0 0 1 0 0 0 0 0
16 1 0 0 0 0 0 1 0 0
48 1 1 0 1 0 0 0 0 0
51 1 1 0 0 0 0 1 0 0
54 1 0 1 1 0 0 0 0 0

Hostile Rules
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Figure 4-12: Problem 4 Optimal Hostile Rules Histogram. 

 
 

The optimal rule set was constant for }6.0,4.0{∈ρ  and very steady 

for }2.0,0.0{∈ρ .  This problem became more separable as correlation increased for both 

classifiers; the optimal rule went from only declaring an exemplar as hostile when both 

classifiers labeled it hostile to a more aggressive hostile rule declaring the exemplar 
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hostile when at least one of the classifiers labeled it hostile.  The optimal hostile rules 

were very dependent on the level of correlation in this problem.  With no correlation 

between the feature sets, IND only declared the output state (H-H) as hostile.  As 

correlation increased, more states became part of the hostile rule.        

4.7 Problem 5: 8 Feature XOR Case           

This data set was applied to the fusion processes described in Chapter 3.  The 

general results held for this problem as well.  The ISOC non-declaration and HIND1 

methods were unable to get adequate separation of the classes.  The linear classifier is not 

apt for slicing an XOR problem such as this.  Thus, the PNN outperformed all other 

methods.  Figure 4-13 shows a pair-wise comparison of the costs further supporting the 

cost inequality stated earlier.     
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Figure 4-13: Marginal Costs. 

 

Also, the box plots in Figure 4-14 show the same result.  The box plots show that the 

average cost of INDPC and NFND are different.  The left box plot clearly shows that the 

lower 50th percentile of the difference between INDPC and NFND is greater than zero.  

Paired t-tests also showed the inequality of  to hold true once 

again. 

NNDTPCTFDT CCC ,,, ≥>
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Figure 4-14: INDPC vs NFND Fusion Box Plots. 

 
With the linear classifier’s inability to separate the groups, the linear indifference window 

returned unexpected results.  When the sample size was increased from 25 to 500, the 

optimal delta window setting decreased.  This is counterintuitive because the linear 

discriminant function is a poor classifier for an XOR problem and logic would suggest 

that the indifference window would be large allowing more individual non-declarations 

from the classifier.  Figure 4-15 shows a histogram of the linear indifference window 

setting as sample size was varied from 25 to 500. 
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Figure 4-15: Linear Classifier Indifference Window Histogram. 
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Due to the poor classification accuracy of the linear classifier, this problem and problem 

6 were both reaccomplished using a PNN as classifier 1 and the quadratic discriminant 

function as classifier 2.  Unfortunately, the PNN was unable to improve performance by 

acting as an individual classifier.  The class means were too close to allow for any true 

separation. 

4.8 Problem 6: 8 Feature XOR with Autocorrelation Case        

This data set was applied to the fusion processes described in Chapter 3.  As stated 

for problem 5, the linear classifier was inadequate to get a reasonable classifier accuracy 

and the fused results suffered.  Results were typical, but not reviewed here as the 

classifiers were poor. 

4.9 Problem 2: 8 Feature Case RSM Study        

 
The case study compared 5 factors in a full factorial experiment using INDLR and 

NFND as described in Chapter 3.  The 5 factors and their settings are displayed in Table 

4-11. 

 

Table 4-11: RSM Factor Settings. 

 
Factor - (Low) + (High)

A - CFP 10 20
B - CFN 5 9
C - CND 1 4
D - ρ 0 0.9

E - ρauto 0 0.9   
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The ISOC likelihood ratio heuristic was shown to be robust to correlation.  The models 

found were not dependent on any levels of correlation.  In fact, the main factor for all 

models tested was factor C, the cost of non-declaration.  This factor proved to be 5 to 10 

times more important than any other factor based on the sums of squares.  Table 4-12 

shows the factors for each model in terms of their importance by sums of squares.  The 

models are generated for all possible indifference windows as described in Chapter 3. 
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Table 4-12: RSM Results for INDLR. 

Factors and Interactions in Order of Importance
delta 1 delta 2 1 2 3 4 Adj R2 RMSE

0 0 C 0.9864 0.03
0 0.1 C A 0.9857 0.03
0 0.2 C A 0.9885 0.02
0 0.3 C A 0.9880 0.03
0 0.4 C A 0.9892 0.03
0 0.5 C B 0.9857 0.03

0.1 0 C B A 0.9454 0.05
0.1 0.1 C B A 0.8752 0.07
0.1 0.2 C B A 0.8688 0.07
0.1 0.3 C A B 0.8529 0.08
0.1 0.4 C B A 0.8632 0.08
0.1 0.5 C 0.9988 0.01
0.2 0 C 0.9470 0.05
0.2 0.1 C B A 0.8753 0.07
0.2 0.2 C B A 0.8650 0.07
0.2 0.3 C B A 0.8511 0.08
0.2 0.4 C B A 0.8681 0.08
0.2 0.5 C 0.9948 0.02
0.3 0 C 0.9556 0.05
0.3 0.1 C B A 0.8790 0.07
0.3 0.2 C B A 0.8807 0.07
0.3 0.3 C B A 0.8741 0.07
0.3 0.4 C B A 0.8895 0.07
0.3 0.5 C B BC 0.9968 0.01
0.4 0 C 0.9415 0.06
0.4 0.1 C A B AC 0.9166 0.06
0.4 0.2 C B A AC 0.9145 0.06
0.4 0.3 C B A BC 0.9000 0.06
0.4 0.4 C B BC 0.9133 0.07
0.4 0.5 C B BC 0.9982 0.01
0.5 0 C 1.0000 0.00
0.5 0.1 C 1.0000 0.00
0.5 0.2 C 1.0000 0.00
0.5 0.3 C 1.0000 0.00
0.5 0.4 C 0.9983 0.01
0.5 0.5 C 1.0000 0.00  

 

The NFND technique was found to react to the correlation as shown in Table 4-13. 
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Table 4-13: NFND RSM Results. 

Factors and Interactions in order in Importance
δ 1 2 3 4 5 6 Adj R2 RMSE
0 A D E B DE 0.65 0.4

0.1 A C D E B DE 0.59 0.41
0.2 C A 0.56 0.55
0.3 C 0.70 0.57
0.4 C 0.86 0.48
0.

5

5 C 1.00 0.00  

 

Factors D (ρ) and E (ρauto) were found to be important in the first two models although as 

the indifference window size increased, the model became dependent on the cost of non-

declaration only.  The models also became more predictive as the window increased due 

to the associated increasing probability of non-declarations.   

4.10 Problem 2: 8 Feature Case Likelihood Ratio Study       

This section attempted to prove INDLR returned optimal rule sets as described in 

Chapter 3.  Rule sets were generated and compared for problems 2 and 4 through 

complete enumeration of ISOC allowing non-declarations and INDLR.  This was 

accomplished for  for 050)1( .i-i
j ×=δ 2,1=j  and 11,,2,1 K=i .  INDLR rules were then 

compared to the optimal rules found through complete enumeration of ISOC allowing 

non-declarations.  These optimal rules always contained the INDLR optimal rule showing 

that the likelihood ratio heuristic can reach an optimal rule set for the problems tested. 

4.11 Summary 

This chapter summarized the findings of this research.  The heuristics described in 

Chapter 3 were compared to each other and neural networks.  Costs and accuracies were 

compared.   
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5. Conclusions and Recommendations 

5.1 Introduction 

This chapter briefly reviews the research.  The literature review, methodology and 

findings and analysis are each discussed.  The important findings of this research process 

as a whole are reiterated and future research ideas are introduced. 

5.2 Literature Review 

Fratricide is unacceptable to the American public today.  Air Force guidance 

supports this opinion by directing the use of fusion for improved accuracy and reliability 

of classifiers thus limiting the possibility of friendly fire incidents (AFPAM 14-410, 

1998).   

 Two fusion methods considered in this research were the Identification System 

Operating Characteristic (ISOC) and Probabilistic Neural Network (PNN) fusion.  The 

ISOC assumes information is independent while the PNN makes no such assumption.  

While the assumptions are clear, the effects due to dependence and correlation are not 

(Willett, et al., 2000).   

The data used for this experiment came from Leap (2004) as described in section 

2.7.  The data used in this research employed varied levels of correlation across 6 

problems differing in geometry, mean vectors, and correlations ρ and ρauto.   

5.3 Methodology 

Indifference windows were introduced both at the individual classifier level as well 

as at the fused classifier level; ISOC methods utilized indifference windows at the 

individual classifier level while the neural networks allowed non-declarations at the fused 

level.  The decision threshold was held constant at T = 0.5 to limit the number of 
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variables in this research; this seemed reasonable as the a priori class sizes were assumed 

equal.  Three separate ISOC heuristics were developed for the addition of non-

declarations both at the individual classifier level as well as at the fused indication level.  

Non-declaration heuristics were compared and contrasted through a cost function.  IFD 

only allowed individual classifier non-declarations while INDPC and INDLR allowed fused 

non-declared indications.  As a result, IFD non-declaration probabilities P(NDIS) were 

constants for a given grid point .  IND),( 21
ii δδ PC and INDLR non-declared probabilities 

were based on fused non-declared indications and varied based upon both the rule set 

used as well as the grid point location.  A PNN fusion method was also developed to 

include non-declarations.  This was used as a benchmark to compare the heuristics.  A 

post-optimality analysis of the costs was performed to determine if there were significant 

interactions between costs and levels of correlation. 

5.4 Findings 

The heuristics developed above were comparable to the PNN fusion method.  The 

ISOC methods continued to be robust to correlation with respect to accuracy and cost 

although costs were affected in some instances.  ISOC fusion methods became more 

stable when sample size was sufficiently large; optimal individual classifier indifference 

window settings converged to a specific grid point location and optimal rule sets 

converged to a single set.  The PNN fusion methods accuracies reacted appropriately with 

the introduction of correlation which was consistent with findings in Leap (2004).  NFND 

and INDPC were comparable methods of classification with similar costs, accuracies and 

non-declaration probabilities.   
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5.5 Implications 

This research developed and tested heuristic approaches to finding the optimal 

Boolean fusion for a set of classifiers allowing non-declarations.  The cost of non-

declarations was found to be the overriding factor within the cost space as specified by 

ACC.  Non-declaration schemes, such as those suggested in this research, have operating 

points which are less costly than forced decision methods but these solutions are sensitive 

to the cost of a non-declaration.  Boolean fusion can find solutions which are comparable 

to those of feature level fusion methods when non-declarations are allowed.  Feature level 

fusion requires a higher level of understanding than decision level fusion.  An operator 

can understand individual sensor indications leading to a fused label while feature level 

fusion techniques such as neural networks require the testing of several parameters.  

These parameters can have a great effect on the fused indications out of the network.  As 

a result, decision level fusion with non-declarations can be utilized to avoid 

inconsistencies while still reaching a satisfactory level of performance.     

 
5.6 Future Research 

This research was the next step in determining the effects of correlation on 

classifier fusion.  One area for improvement to this study is the use of real world data for 

further confirmation.  One further step would be to model ISOC fusion for dependent 

classifiers to consider more real world applications.  Another improvement would be the 

consideration of a PNN compared with the ISOC heuristics described while allowing the 

PNN to train on an equivalent amount of data to see if the findings are consistent.  

Finally, the political correctness measure could be applied to the INDLR as well as a 

difference measure to sort the rankings of states with no occurrences.                  
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